This is Big Book

  • GIS & Maps - Lincoln County, Minnesota
  • GIS - Salt Lake County, Utah



A geographic information system (GIS) lets us visualize, question, analyze, and interpret data to understand relationships, patterns, and trends.

GIS is widely used to optimize maintenance schedules and daily fleet movements. Typical implementations can result in a savings of 10 to 30 percent in operational expenses through reduction in fuel use and staff time, improved customer service, and more efficient scheduling.

GIS is the go-to technology for making better decisions about location. Common examples include real estate site selection, route/corridor selection, evacuation planning, conservation, natural resource extraction, etc. Making correct decisions about location is critical to the success of an organization.

The purpose of this document is to share a system design methodology that promotes successful deployment of geographic information system (GIS) technology. This system design methodology includes guidelines for identifying business requirements, making appropriate software selection, using properly configured data sources, and providing sufficient hardware to meet user productivity needs. This document focuses on system performance and scalability - building a GIS that will perform during peak operational loads.

Much more can be said about business requirements analysis (GIS User Needs) and available software functionality - this is not the focus of this documentation. Dr Roger Tomlinson (Father of GIS) provides an excellent book that shares a proven framework for comprehensive GIS planning called Thinking about GIS . Understanding the information products you want out of the GIS and identifying the software candidates you might use to produce these information products is a prerequisite for completing your system architecture design. The Planning for Building a GIS video series shares an overview of this business process analysis planning methodology.

System architecture design is a process developed by Esri to promote successful GIS enterprise operations. This process builds on your existing information technology (IT) infrastructure and provides specific recommendations for hardware and network solutions based on existing and projected business (user) needs.

GIS student project ideas, GIS case studies, GIS projects, GIS uses – From over 50 industries, this jam-packed guide of 1000 GIS applications will open your mind to our amazing planet and its inter-connectivity.

1. Precision Farming – Harvesting more bushels per acre while spending less on fertilizer using precision farming and software. ( How to win the farm using GIS )

615. Targeting Advertising – Positioning advertisements for target demographics using census data and the right location.
616. Communicating Stories – Storytelling in news events with maps such as oil spills, crime scenes and weather damage.
617. Social Media Mapping – Monitoring social media by location.
618. Movie Maps – Creating ultra-realistic 3D cities for big box office movies. ( Esri Goes to Hollywood )
619. Bigfoot Field Researchers Network – Finding Bigfoot in a spatial sightings database. ( Bigfoot Research )

A geographic information system (GIS) lets us visualize, question, analyze, and interpret data to understand relationships, patterns, and trends.

GIS is widely used to optimize maintenance schedules and daily fleet movements. Typical implementations can result in a savings of 10 to 30 percent in operational expenses through reduction in fuel use and staff time, improved customer service, and more efficient scheduling.

GIS is the go-to technology for making better decisions about location. Common examples include real estate site selection, route/corridor selection, evacuation planning, conservation, natural resource extraction, etc. Making correct decisions about location is critical to the success of an organization.

The purpose of this document is to share a system design methodology that promotes successful deployment of geographic information system (GIS) technology. This system design methodology includes guidelines for identifying business requirements, making appropriate software selection, using properly configured data sources, and providing sufficient hardware to meet user productivity needs. This document focuses on system performance and scalability - building a GIS that will perform during peak operational loads.

Much more can be said about business requirements analysis (GIS User Needs) and available software functionality - this is not the focus of this documentation. Dr Roger Tomlinson (Father of GIS) provides an excellent book that shares a proven framework for comprehensive GIS planning called Thinking about GIS . Understanding the information products you want out of the GIS and identifying the software candidates you might use to produce these information products is a prerequisite for completing your system architecture design. The Planning for Building a GIS video series shares an overview of this business process analysis planning methodology.

System architecture design is a process developed by Esri to promote successful GIS enterprise operations. This process builds on your existing information technology (IT) infrastructure and provides specific recommendations for hardware and network solutions based on existing and projected business (user) needs.

A geographic information system (GIS) lets us visualize, question, analyze, and interpret data to understand relationships, patterns, and trends.

GIS is widely used to optimize maintenance schedules and daily fleet movements. Typical implementations can result in a savings of 10 to 30 percent in operational expenses through reduction in fuel use and staff time, improved customer service, and more efficient scheduling.

GIS is the go-to technology for making better decisions about location. Common examples include real estate site selection, route/corridor selection, evacuation planning, conservation, natural resource extraction, etc. Making correct decisions about location is critical to the success of an organization.

9 17 25 33 41 49 57 65 73 81


my-book-review.info All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher
51F3Sl02mOL